CLIK hands-on (PART IV):

Multi Model Downscaling using CLIK

(http://clik.apcc21.org)

Daeun Jeong
APEC Climate Center
Downscaling procedure in CLIK

Station data

- Point (uploaded)

Global observation data

- Grid (built-in)
- Reanalysis: NCEP2; atmospheric variables
- Satellite: CAMS OPI; precipitation

Model data

- Grid (built-in)
- Hindcast by dynamical models
Downscaling procedure in CLIK

STEP I

- Station data (A)
- Global observation data (B)

Screening test 1

- No → Bad Stations
- Yes → Hopeful Stations

STEP II

- Hopeful Stations (B)
- Model data (C)

Screening test 2

- No
 - Remain as “Hopeful Station”
- Yes → Good Stations

STEP III

- Good Stations (C)
- Model data

Downscaled Forecast for the station (C)

Downscaling procedure in CLIK

STEP 1

Screening test 1:
- Do the station data and the global map from observation have a relationship based on “significance level”?
- Do the station data have relationship with the large-scale climate pattern?

Correlation map of global observation vs. station
Downscaling procedure in CLIK

STEP II

Screening test 2:
- Can the dynamical models reproduce the relationship between the global observation and hopeful stations?
- Screen based on the “minimum pattern correlation”.

Correlation maps show the relationship between global observations, model data, and station data for different variables and locations.
Downscaling procedure in CLIK

Downscaled Forecast
for the station

Downscaling

Good Stations

Model data

Downscaling process:
- Based on the linear regression model
- \(y = a + bx \)
Downscaling procedure in CLIK

Relationship between precipitation over Yangon & ...

- The station data has relationship with the global observational sst over some areas.
- Dynamical models can reproduce the relationship between observation and station data.
- We hope a successful downscaling by CLIK system...

[Images showing sst vs. prec over Yangon and sst (scm) vs. prec over Yangon maps for JJA]
Rainfall over Yangon for the next three month (JJA 2017)?
Produce a downscaled forecast

1. Select the dataset and station.
2. Shift + drag to select the area of interest.
3. View the station data and precipitation.
4. Check the common data period of selected stations.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Name</th>
<th>Precipitation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pyinmana</td>
<td>1987/1 ~ 2010/12</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Khasaya</td>
<td>1987/1 ~ 2013/12</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Sagyang</td>
<td>1987/1 ~ 2010/11</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>
Produce a downscaled forecast

A. Set options

Set-up Downscaling
Precipitation over Phetchaburi for JJA 2017
(up to you)
Produce a downscaled forecast

A. Set options

Prediction Season

2017 JJA
Produce a downscaled forecast

A. Set options

Variable

SST
Produce a downscaled forecast

Set-up Downscaling

- **Prediction Season**
 - Year: 2017
 - Season: JJA

- **Variable**
 - PREC, T850, 2500, SLP, U850, V850, U200, V200, SST

- **Models**
 - APOC, MSC, NASA, NCEP, PNU, POAMA

- **Predictand**
 - Precipitation, Temperature

- **Training Period**
 - From: 1987
 - To: 2010

- **Method**
 - Linear Regression

- **Advanced Options**
 - Significance Level: 5%
 - Minimum Pattern Score: 0.1

A. Set options

Models

ALL
Produce a downscaled forecast

A. Set options

Predictand
Precipitation
Produce a downscaled forecast

A. Set options

Training Period
Common period (default)
Produce a downscaled forecast

A. Set options

Method
Linear Regression
Produce a downscaled forecast

A. Set options

Advanced Options
Significance Level: 5%
Minimum Pattern Score: 0.1

Relationship between precipitation over Yangon and sst
Resemblance of model pattern (sst) and observation pattern (sst over the predictor area)
Produce a downscaled forecast

A. Set options

Downscaling Region
Latitude -10~15
Longitude 90~240
(predictor area)
Produce a downscaled forecast

B. Check results

<table>
<thead>
<tr>
<th>JOB ID</th>
<th>TYPE</th>
<th>STATE</th>
<th>RESULT DATA</th>
<th>CREATED</th>
<th>UPDATED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5559</td>
<td>Downscale</td>
<td>success</td>
<td>download</td>
<td>2017-06-01 21:34:57</td>
<td>2017-06-01 21:35:34</td>
<td>running 850</td>
</tr>
<tr>
<td>5557</td>
<td>Downscale</td>
<td>success</td>
<td>download</td>
<td>2017-06-01 21:32:54</td>
<td>2017-06-01 21:33:35</td>
<td>phetchaburi</td>
</tr>
<tr>
<td>5553</td>
<td>Downscale</td>
<td>fail</td>
<td></td>
<td>2017-06-01 20:49:24</td>
<td>2017-06-01 20:49:29</td>
<td>-</td>
</tr>
<tr>
<td>5548</td>
<td>Downscale</td>
<td>fail</td>
<td></td>
<td>2017-06-01 20:01:57</td>
<td>2017-06-01 20:02:01</td>
<td>-</td>
</tr>
<tr>
<td>5547</td>
<td>Downscale</td>
<td>success</td>
<td>download</td>
<td>2017-06-01 19:36:02</td>
<td>2017-06-01 19:36:30</td>
<td>-</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 140 entries
B. Check results

<table>
<thead>
<tr>
<th>JOB ID</th>
<th>TYPE</th>
<th>STATE</th>
<th>RESULT DATA</th>
<th>CREATED</th>
<th>UPDATED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5553</td>
<td>Downscale</td>
<td>fail</td>
<td></td>
<td>2017-06-01 20:49:24</td>
<td>2017-06-01 20:49:29</td>
<td>-</td>
</tr>
<tr>
<td>5548</td>
<td>Downscale</td>
<td>fail</td>
<td></td>
<td>2017-06-01 20:01:57</td>
<td>2017-06-01 20:02:01</td>
<td>-</td>
</tr>
<tr>
<td>5547</td>
<td>Downscale</td>
<td>success</td>
<td>download</td>
<td>2017-06-01 19:36:02</td>
<td>2017-06-01 19:36:30</td>
<td>-</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 140 entries
Produce a downscaled forecast

B. Check results

<table>
<thead>
<tr>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOB ID</td>
<td>5545</td>
</tr>
<tr>
<td>DOWNSCALE_ID</td>
<td>4748</td>
</tr>
<tr>
<td>PREDICTAND</td>
<td>PREDICTOR</td>
</tr>
<tr>
<td>YEAR/SEASON</td>
<td>2017 / 6</td>
</tr>
<tr>
<td>PREDICTAND</td>
<td>PREC</td>
</tr>
<tr>
<td>DATASET</td>
<td>Myanmar [ID: 8276]</td>
</tr>
<tr>
<td>STATION</td>
<td>3 Stations</td>
</tr>
<tr>
<td>SIGNIFICANCE LEVEL</td>
<td>5%</td>
</tr>
<tr>
<td>MINIMUM PATTERN SCORE</td>
<td>0.1</td>
</tr>
<tr>
<td>CREATE At</td>
<td>2017-06-01 09:31:36</td>
</tr>
<tr>
<td>UPDATE At</td>
<td>2017-06-01 09:34:05</td>
</tr>
<tr>
<td>Training Period</td>
<td>1987 / 2010</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>SST</td>
</tr>
<tr>
<td>MODELS</td>
<td>APCC, MSC, NASA, NCEP, PNU, POAMA</td>
</tr>
<tr>
<td>REGION</td>
<td>Lat -10–15/ Lon 90–240</td>
</tr>
</tbody>
</table>

[ViewResult] [Edit]
Produce a downscaled forecast

B. Check results

- Historical time series of station data and hindcast data
- Correlation coefficient
- Deterministic forecast
- Tercile category of the forecast
Produce a downscaled forecast

B. Check results

- Location of the station

Details:

- Predictand: PREC
- Year/Season: 2017/18
- Training Period: 1987-2010
- Predictand: PREC
- Variable: SST
- Dataset: Myanmar
- Model: NASA, NCEP, FNL
- Region: 3 stations
- Region: Lat: 15° N, Lon: 90° - 140° E
- Significance Level: 5%
- Minimum Pattern Score: 0.1

Selected Stations:

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Result</th>
<th>Name</th>
<th>Data period for PREC</th>
<th>Data period for TII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad</td>
<td>nguahrai</td>
<td>1951/1 - 2016/12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>pondokkletung</td>
<td>1951/1 - 2016/12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bad</td>
<td>kemayorunn</td>
<td>1971/1 - 2016/8</td>
<td></td>
</tr>
</tbody>
</table>

Seasonal forecast of station:

- Correlation: 0.61
- PREC_forecasted = 3.04 mm/month

Observation prediction:

Satalon's Location:

Linear Regression of station on observed predictor:

Linear Regression of station on model predictor:
B. Check results

- Relationship pattern between the predictor (sst, observation) and the station data (precipitation) over the selected area
- Screening test 1
B. Check results

- Relationship pattern between the predictor (sst, model) and the station data (precipitation) over the selected area
- Screening test 2
B. Check results

Stations & Prediction Result

- **Seasonal Forecast of Station**
 - Correlation: 0.61
 - PREC_forecasted = 3.04 mm/month

- **Linear Regression of Station on Observed Predictor**

- **Linear Regression of Station on Model Predictor**

Selected Stations

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Result</th>
<th>Name</th>
<th>Data period for PREC</th>
<th>Data period for TDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad</td>
<td>ngozubai</td>
<td>1951/1 ~ 2016/12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>pontokelung</td>
<td>1951/1 ~ 2016/12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bad</td>
<td>kemayoran</td>
<td>1971/1 ~ 2016/12</td>
<td></td>
</tr>
</tbody>
</table>

Details

- **Predictand**: PREC
- **Year/Season**: 2017/18
- **Predictor**: SST
- **Dataset**: Myanmar
- **Variable**: SST
- **Region**: 3 stations, Lat.: 15 ~ 15, Lon.: 90 ~ 140
- **Significance Level**: 0.1
- **Minimum Pattern Score**: 5%

http://clik.apcc21.org
Produce a downscaled forecast

- If the downscaling fails, be patient and try again!
 - Find the large scale climate system (predictor) that affects local climate.
 - Tropical area can be a good choice where dynamical models have good skill.
 - Check correlation maps that we give you.

http://clik.apcc21.org
Exercise 1

Precipitation over Yangon for JJA 2017

Q1

- Prediction Season (2017/JJA)
- Variables (U850)
- Models (ALL)
- Predictand (Precipitation)
- Training Period (default)
- Method (Linear Regression)
- Advanced Options (Sig lev 5%, Min pattern score 0.1)
- Downscaling Region (?)

CHECK CORRELATION MAPS!
Data for hands-on > cor map
Exercise 1

Precipitation over Yangon for JJA 2017

A1

Prediction Season (2017/JJA)
Variables (U850)
Models (ALL)
Predictand (Precipitation)
Training Period (default)
Method (Linear Regression)
Advanced Options (Sig lev 5%, Min pattern score 0.1)
Downscaling Region (lat 0~15, lon 85~190)
Exercise 1

Precipitation over Yangon for JJA 2017

A1

- CWB
- Hopeful
- Above normal
Exercise 1
Precipitation over Yangon for JJA 2017

A1

- POAMA
- Good
- Above normal
Exercise 2

Precipitation over YOUR CITY for JJA 2017

Q2

Prediction Season (2017/JJA)
Variables (?????)
Models (ALL)
Predictand (Precipitation)
Training Period (default)
Method (Linear Regression)
Advanced Options (Sig lev 5%, Min pattern score 0.1)
Downscaling Region (?????)

Downscale

CHECK
CORRELATION
MAPS!
Data for hands-on > cor map
Thank you.
Exercise 2

Precipitation over Simtokha for JJA 2017

Q2

Prediction Season (**2017/JJA**)
Variables (**SST**)
Models (**ALL**)
Predictand (**Precipitation**)
Training Period (default)
Method (Linear Regression)
Advanced Options (**Sig lev 5%, Min pattern score 0.1**)
Downscaling Region (**lat -60~40, lon 40~150**)

![Map of sst (scm) vs. prec over Semtokha](image1)
![Map of sst vs. prec over Semtokha](image2)
Exercise 2
Precipitation over Simtokha for JJA 2017

A2

<table>
<thead>
<tr>
<th>Details</th>
<th>PREDICTAND</th>
<th>PREDICTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR/SEASON</td>
<td>2017/0</td>
<td>Training Period</td>
</tr>
<tr>
<td>PREDICTAND</td>
<td>PREC</td>
<td>90T</td>
</tr>
<tr>
<td>DATASET</td>
<td>Bhutan</td>
<td>MODELS</td>
</tr>
<tr>
<td>REGION</td>
<td>1 Stations</td>
<td>REGION</td>
</tr>
<tr>
<td>SIGNIFICANCE LEVEL</td>
<td>5%</td>
<td>MINIMUM PATTERN SCORE 0.1</td>
</tr>
</tbody>
</table>

Selected Stations

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Name</th>
<th>Data period for PREC</th>
<th>Data period for TEMP</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12700045</td>
<td>Good</td>
<td>1995/01 - 2015/12</td>
<td></td>
<td>0.338176</td>
</tr>
</tbody>
</table>

- MSC
- Good
- Below normal
Exercise 2

Precipitation over Simtokha for JJA 2017

A2

✓ NASA
✓ Hopeful
✓ Above normal
Exercise 2
Precipitation over Pyinmana for JJA 2017

Q2
Prediction Season (2017/JJA)
Variables (SLP)
Models (ALL)
Predictand (Precipitation)
Training Period (default)
Method (Linear Regression)
Advanced Options (Sig lev 5%, Min pattern score 0.1)
Downscaling Region (lat -5~10, lon 155~215)

http://clik.apcc21.org
Exercise 2

Precipitation over Pyinmana for JJA 2017

A2

<table>
<thead>
<tr>
<th>Details</th>
<th>PREDICTAND</th>
<th>PREDICTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING</td>
<td>2017/0</td>
<td>Training Period 1997 / 2015</td>
</tr>
<tr>
<td>PREDICTAND</td>
<td>PREC</td>
<td>VARIABLE SLP</td>
</tr>
<tr>
<td>DATASET</td>
<td>WYNNR</td>
<td>MODELS</td>
</tr>
<tr>
<td>REGION</td>
<td>3 stations</td>
<td>REGION</td>
</tr>
<tr>
<td>SIGNIFICANCE</td>
<td>LEVEL</td>
<td>0%</td>
</tr>
<tr>
<td>MINIMUM PATTERN</td>
<td>SCORE</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Mandatory stations & good result only.

Stations & Prediction Result

- **Correlation**: 0.32, **PREC_forecast** = 70.08 mm/month

Selected Stations

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Model</th>
<th>Name</th>
<th>Date period for PREC</th>
<th>Date period for TEMP</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APCC</td>
<td>nqutara</td>
<td>1951/1 - 2016/12</td>
<td>0.323762</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>paisandololung</td>
<td>1961/1 - 2016/1</td>
<td>0.531862</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bad</td>
<td>lemeyanan</td>
<td>1971/1 - 2015/9</td>
<td>0.990</td>
<td></td>
</tr>
</tbody>
</table>

- ✓ APCC
- ✓ Good
- ✓ Above normal
Exercise 2

Precipitation over Pyinmana for JJA 2017

A2

- NASA
- Hopeful
- Near normal