Intelligent Agricultural Production System based on Climate, Crop, and Field Information

2017. 8. 19.

Kyeong-Hwan Lee
Agricultural Robotics and Automaton Research Center
Chonnam National University
OUTLINE

1. Issues in Agriculture
2. Intelligent Agricultural Production System
3. Strategies
01

Issues in Agriculture
World Population Growth

- **World population growth**

 (source: writings.basiliochen.com)

- **Increased demand for food production**

 (source: www.economist.com)
Food Safety

- Pesticide residue in foods

CHEMICALS IN YOUR SHOPPING

Foods most likely to have pesticide residues:

- Oranges: 97.98%
- Flour: 96.83%
- Pears: 96.52%
- Pineapple: 93.33%
- Grapes: 91.33%
- Apples: 90.63%
- Dried Grapes: 80.95%
- Raspberries: 76.47%
- Bread: 73.61%
- Carrots: 72.97%
- Peppers: 70.27%

(source: www.dailymail.co.uk)

SUPERMARKETS ARE NOW URGENTLY RECALLING SALADS AND SANDWICHES CONTAINING EGG

(source: www.grimsbytelegraph.co.uk)
Demand for Organic Food

Organic agricultural land

Climate Change

- Yield loss due to climate change

Global warming

Yield Loss Due to Drought Stress

Yield: Bushels per Acre

- Wet spring, early frost -16%
- Blight -18%
- Drought -17%
- Drought -26%
- Drought -29%
- Flood
- Unusual Climate Events
2016 Global food security index

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>86.6</td>
</tr>
<tr>
<td>2</td>
<td>Ireland</td>
<td>84.3</td>
</tr>
<tr>
<td>3</td>
<td>Singapore</td>
<td>83.9</td>
</tr>
<tr>
<td>4</td>
<td>Australia</td>
<td>82.6</td>
</tr>
<tr>
<td>4</td>
<td>Netherlands</td>
<td>82.6</td>
</tr>
<tr>
<td>6</td>
<td>France</td>
<td>82.5</td>
</tr>
<tr>
<td>6</td>
<td>Germany</td>
<td>82.5</td>
</tr>
<tr>
<td>8</td>
<td>Canada</td>
<td>81.9</td>
</tr>
<tr>
<td>8</td>
<td>United Kingdom</td>
<td>81.9</td>
</tr>
<tr>
<td>10</td>
<td>Sweden</td>
<td>81.3</td>
</tr>
<tr>
<td>11</td>
<td>New Zealand</td>
<td>81.1</td>
</tr>
<tr>
<td>12</td>
<td>Norway</td>
<td>81.0</td>
</tr>
<tr>
<td>13</td>
<td>Switzerland</td>
<td>80.9</td>
</tr>
<tr>
<td>14</td>
<td>Denmark</td>
<td>80.0</td>
</tr>
<tr>
<td>14</td>
<td>Portugal</td>
<td>80.0</td>
</tr>
<tr>
<td>16</td>
<td>Austria</td>
<td>79.3</td>
</tr>
<tr>
<td>17</td>
<td>Finland</td>
<td>78.9</td>
</tr>
<tr>
<td>17</td>
<td>Israel</td>
<td>78.9</td>
</tr>
<tr>
<td>19</td>
<td>Spain</td>
<td>77.7</td>
</tr>
<tr>
<td>20</td>
<td>Qatar</td>
<td>77.5</td>
</tr>
<tr>
<td>21</td>
<td>Belgium</td>
<td>77.4</td>
</tr>
<tr>
<td>22</td>
<td>Italy</td>
<td>75.9</td>
</tr>
<tr>
<td>22</td>
<td>Japan</td>
<td>75.9</td>
</tr>
<tr>
<td>24</td>
<td>Chile</td>
<td>74.4</td>
</tr>
<tr>
<td>25</td>
<td>Czech Republic</td>
<td>73.9</td>
</tr>
<tr>
<td>26</td>
<td>Oman</td>
<td>73.6</td>
</tr>
<tr>
<td>27</td>
<td>Kuwait</td>
<td>73.5</td>
</tr>
<tr>
<td>28</td>
<td>South Korea</td>
<td>73.3</td>
</tr>
<tr>
<td>29</td>
<td>Poland</td>
<td>72.4</td>
</tr>
<tr>
<td>30</td>
<td>United Arab Emirates</td>
<td>71.8</td>
</tr>
<tr>
<td>31</td>
<td>Greece</td>
<td>71.5</td>
</tr>
<tr>
<td>32</td>
<td>Saudi Arabia</td>
<td>71.1</td>
</tr>
<tr>
<td>33</td>
<td>Bahrain</td>
<td>70.1</td>
</tr>
<tr>
<td>34</td>
<td>Hungary</td>
<td>69.3</td>
</tr>
<tr>
<td>35</td>
<td>Malaysia</td>
<td>69.0</td>
</tr>
<tr>
<td>36</td>
<td>Uruguay</td>
<td>68.4</td>
</tr>
<tr>
<td>37</td>
<td>Argentina</td>
<td>68.3</td>
</tr>
<tr>
<td>37</td>
<td>Costa Rica</td>
<td>68.3</td>
</tr>
</tbody>
</table>

(source: A report from the EIU)

Food self-sufficiency in Korea

- **Food self-sufficiency**: except feed for livestock
- **Grain self-sufficiency**: including feed for livestock
Challenges in Agriculture

- Need of increasing food production (quantity)
- Increased demand for safe food or environment-friendly agriculture (quality)
- Demand for business model for highly economic return in agriculture
- Required high global competitiveness in agriculture
- Improvement of life quality of persons working in agriculture

Innovation of agricultural production system using digital transformation technology

Digital transformation (4th industrial revolution): highly connected and highly intelligent society based on technology of ICT/IoT, robot/UAV, artificial intelligence, big data, 3D printer etc.
02

Intelligent Agricultural Production System
Intelligent Agricultural Production System

(source: Farm Forward by John Ddere, www.youtube.com)
Intelligent Agricultural Production System

(source: Trimble Connected Farm, www.youtube.com)
Intelligent Agricultural Production System

“An intelligent agricultural production system can maximize the efficiency of the system by unsupervised learning with minimum interception of human”

- **Input**: labor, chemicals (fertilizer, pesticide, etc.)
 - water (irrigation), energy, environmental control, etc.

- **Output**: Quantity and quality of agricultural product

(Intelligent agricultural production system)

Decision making system (experience -> Big data, Artificial intelligence, etc.)

Actuating system (human -> agricultural machinery -> Robot, UAV, etc.)

Monitoring system (human sense -> soil, crop sensors)

UAV sensing platform

Weather information
Precision Agriculture

“Site-specific variable technology based on farm field and crop conditions”

Optimum input:

Right time,
Right amount,
Right place
Monitoring System

- Satellite
 - Large covered area (FOV)
 - Low sensitivity

- UAV
 - Small covered area (FOV)
 - High sensitivity

- Mobile robot

- Biosensor
Monitoring System

Sensor platforms
Monitoring System

Sensors

- SICK LMS-291
- Mini MCA Tetracam
- Sony DSC-V1
- Micro-Hyperspec VNIR
- Tetracam-ADC
- FLIR Thermovision A40M
Genomics and Phenomics

- **Genomics**
 - High throughput analysis of genes and their immediate products, to study the structure and function of genes and genomes

- **Phenomics**
 - High throughput analysis of plant growth and physiology, to reveal the role of each gene in the function of the whole plant

Genomics + Phenomics = Functional Genomics

Innovation, Gene discovery
Monitoring System

- **Phenomics**

 Phenomics uses imaging techniques to allow researchers to study the inner workings of leaves, roots or whole plants.

 - Visible imaging – color, morphology
 - Infrared & Near-infrared imaging
 - Fluorescence imaging
 - Magnetic resonance imaging
Visible imaging

1. Plant color classification
 - Plant health
 - Stress
 - Nutrients
 - Senescence

2. Plant morphology
 - Stem, leaves
 - nodes, length of leaves

Plant growth
Near infrared (NIR) imaging

Measuring water distribution and dynamics

wheat dried down at elevated temperature

0h
4h
8h
16h
Monitoring System

- Infrared (IR) imaging

Quantify temperature differences
(e. g. within leaves and between plants)
“Diagnosis of crop stress, disease, nutrient deficiency in an early stage”

Molecular level
- Micro/nano biosensing technology
- High sensitivity and small FOV
- Possible to diagnose in an early stage
- Direct sensing for crop monitoring

Canopy level
- Spectroscopic, imaging technology
- Low sensitivity and large FOV,
- Not easy to diagnose in an early stage
- Indirect sensing for crop monitoring
Monitoring System

Biosensor for early diagnosis
Monitoring System

Sensing for virtual farming

- Digitization
- Feature extraction
- Geometric modeling

Breed variety heredity
Topology
Shape feature
Distribution
Agricultural technologies

Visual canopy model
Crop model & Expert system
Statistic distribution analysis
Monitoring System

- Monitoring rice plant in the whole life cycle using UAV

Plowing
- Surface elevation variation
- Uniformity of plowing depth

Transplanting
- Planting density (missing plant rate)
- Space between plants
- Coordinate each plant

Disease/Pest management
- Monitoring disease and nutrient deficiency

Harvesting
- Yield measurement at each plant
- Yield variation

Maximize yield and quality with minimum input
Monitoring System

- Plowing stage: uniform surface elevation
Monitoring System

Transplanting stage: planting density
Monitoring System

- Growing stage: crop growth information based on spectroscopic and morphological analyses

<table>
<thead>
<tr>
<th>Date of image acquisition</th>
<th>RGB image</th>
<th>NIR image</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 29, 2015 (28 days after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 14, 2015 (49 days after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 25, 2015 (60 days after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 14, 2015 (80 days after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 1, 2015 (98 days after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 11, 2015 (108 days after)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harvesting stage: yield monitoring of each plant

\[
y = 1.073x - 0.2227 \\
R^2 = 0.9308
\]

Predicted number of grain

\[
y = 0.7055x + 28.32 \\
R^2 = 0.8421
\]

Ground truth of number of grain

Predicted grain area (mm\(^2\))

Ground Truth of grain area (mm\(^2\))
Decision Making System

- Collecting data of weather, soil, crop in various conditions
- Big data based optimum model for input of agricultural materials
- Calibration of the model in various environments

(www.airinov.fr)
Integrated farming system of Monsanto

Integrated Farming Systems™ Would Combine Advanced Seed Genetics, On-farm Agronomic Practices, Software and Hardware Innovations to Drive Yield

DATABASE BACKBONE
Expansive seed-by-environment testing makes on-farm prescriptions available for certified seed dealer sales and service.

VARIABLE-RATE FERTILITY
Variable rate N, P, & K “Apps” aligned with yield management zones.

PRECISION SEEDING
Planter systems enabling scripts for variable rate seeding with optimal row spacing of hybrids in a field by yield management zones.

FERTILITY & DISEASE MANAGEMENT
“Apps” for in-season custom application of supplemental rates of nitrogen and fungicides.

BREEDING
Significant increases in data points collected per year to increase annual rate genetic gain.

YIELD MONITOR
Advances in Yield Monitoring to deliver higher resolution data.

(test.monsanto.com)
Actuating System

- Application of robots: variable-rate actuation
Actuating System

- Aerial manipulator for collection and inspection of crops

- Cooperative control of multi-UAVs for transportation of products
Actuating System

- UAV–based tracking of small insect
- Haptic teleoperation of aerial manipulator
- Cooperation between UAV and autonomous tractor
Strategies and Conclusions
Strategies

- Fully automated agricultural production in the whole life cycle
Strategies

- Cooperation between automation-related industry and agriculture for the development of core technology
- Adoption of new technology from related advanced industry

(Google's self-driving car) (Autonomous tractor)
Strategies

- Innovative idea based core technology, creative engineers/researchers
Innovation of Agricultural Production System !!!

Thank You !!!

Kyeong-Hwan Lee (khlee@jnu.ac.kr)