더블 피크 엘니뇨

신나연 & 국종성
포항공대 환경공학부

1. Background

Two Types of El Nino

Different type Different impact

(Wang et al. 2018)
1. Background

What is the Double peaked El Nino?

- Two separate, concurrently growing, centers of warming are identified.
- Have been evidenced in CGCMs
- Without precedent in observations

(Graham et al. 2017)
2. Topic of research

BUT!!

Double Peaked El Nino events exist in real world.

What Mechanism?
3. Data

All data are monthly (1980 - 2019/2)

<table>
<thead>
<tr>
<th>ERSST</th>
<th>________________</th>
<th>SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>GODAS</td>
<td>________________</td>
<td>Currents (u,v,w)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wind stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential Temperature</td>
</tr>
<tr>
<td>CMAP</td>
<td>________________</td>
<td>Precipitation</td>
</tr>
</tbody>
</table>
How to define the Double peaked El Nino?

2S~2N, 160 ~ 270 (interval 30)

> 1 STD: detect El Nino

Find Peak

If the double peaks exist in NDJ
4. Results

Distribution of El Nino peaks

(a) All peak (1980-2018)

(b) NDJ peak

- **Double Peaked El Nino (3)**
 - 02/03, 06/07, 18/19

- **Cold Tongue El Nino (3)**
 - 82/83, 97/98, 15/16

- **Warm Pool El Nino (6)**
 - 86/87, 87/88, 91/92, 94/95, 04/05, 09/10
4. Results

Evolution of SSTA

(a) Cold Tongue

(b) Warm Pool

(c) Double peak

Late development
4. Results

Mature phase of each El Nino case

WP & DP
PRCP, zonal wind stress

Similar pattern
4. Results

Advection terms of each peak

(a) Central peak (5S-5N & 185-215E & AUG-NOV)

(b) Eastern peak (5S-5N & 240-270E & AUG-NOV)

Central peak
Zonal advection Feedback

Eastern peak
Thermocline feedback
4. Results – Central peak

180E

- Negative wspd anomaly
 - Less evaporation cooling
 - Contribute to developing warm center

135W

- Positive wspd anomaly
 - More evaporation cooling
 - Cutoff the peaks

Developing phase of Wind Speed anomaly

(a) Wind speed (5S-5N & AUG-NOV) vs Warm Pool

- 135E 180 135W 90W

(b) Wind speed (5S-5N & AUG-NOV) vs Double Peak

- 135E 180 135W 90W

 longitude

longitude
4. Results – Eastern peak

Developing phase

- Strong ITCZ prcp
- Strong Westerly in the central pacific
- High sea level in the eastern pacific
- Strong thermocline feedback term
4. Results – Eastern peak

Area average of boxes & Dynamic sea level height

Simplified Sverdrup balance at equator

\[g \int_0^x \frac{\partial h}{\partial x} \, dx = \frac{1}{\rho H} \int_0^x \tau_x \, dx \]

\[h(x) = h(0) + \frac{1}{\rho g H} \int_0^x \tau_x \, dx \]
4. Results – Role of ITCZ precipitation

Reg. & Partal Reg. w.r.t. the ITCZ Precipitation

LBM Experiments
5. Summary

< Double Peaked El Nino >