The new BMGK Climate Change Information System to Address Cross-Sectoral Drought Information Needs

− report from the work bench −

Dr. Widada Sulistya, BMKG
Dr. Edvin Aldrian, BMKG
Dr. Gerhard Rappold, GIZ
I. Background
II. Vision of the Climate Change Information System
III. Status of work with respect to “drought"
IV. Conclusions
Background

Project: *Data and Information Management on Adaptation to Climate Change (DATACLIM)*

- Funded by the *International Climate Initiative (ICI)* of the *German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU)*
- Implemented by BMKG and GIZ (2011 – 2013 will be extended to 03/2014)
Background

Project objectives I:

Preserving the climate heritage of Indonesia:

Historical Climate Data Recovery of:

- daily data from > 160 meteorological stations
 1970 until today
- > 3000 daily rainfall gauge data (from approx.
 6000)
Background

Project objectives II:

- Creating a “Climate Change Information System” (CCIS) to address the needs of the Public Sector regarding climate stimuli information for adaptation to climate change.

- This CCIS shall address the information needs of the “Indonesian Adaptation Action Plan” (RAN-API)
From accurate data ... develop relevant services ... for those who need it.

- Data catalog
- Metadata of weather stations
- Improvement of data management
- Quality control of data recovery
- Process design of data recovery

HISTORICAL DATA RECOVERY

CURRENT DATA on-site measurement

Climate Change Information Services (CCIS)

- Forestry
- Environment
- Water resources
- Agriculture
- Health
- Academic/Science
- Energy
Vision

- The Climate Change Information System provides easy access to understandable climate change information for BMKG itself, the public sector (RAN-API stakeholders) and the general public.
Status of work with respect to “drought”

Identifying needs for climate information

Assess climate information needs for cross sectoral drought management:

- In sectoral Focal Group Discussions (FGD) specific demand was/is identified
- Identify climate indices that match the needs (using scientific sound basis e.g. ClimDex, and others)
Status of work with respect to “drought”

- 40 climate parameters and indices derived and mapped to sectoral needs for > 50 stations
- For drought and warm extremes e.g.:
 - Walter-Lieth Diagrams
 - Consecutive Dry Days (CDD)
 - Standardised Precipitation Index (SPI)
 - Warm Spell (WS)
 - Hot heat index (HHI)
 - Length of Dry Season (LDS)
 - Onset Dry Season (ONDS)
Walter-Lieth climate diagram

1 Stamar Tanjung Priok in Jakarta:

2 Time period of observation

3 Annual average of temperature and annual precipitation sum

4 (red) Average temperature curve

5 (blue) Precipitation sum curve

Dry season
First glimpse to the data

Bogor (96753) Malang (96943)
Trend of Standardized Precipitation Index SPI (1985-2010)

Change per year [standard deviations]
- 0.039 - 0.063
- 0.014 - 0.038
- -0.012 - 0.013
- -0.037 - -0.013
- -0.063 - -0.038
Trend of Consecutive Dry Days CDD (1985-2010)

Change per year [days]
- 1.01 - -1.66
- 0.34 - 1.00
- -0.32 - 0.33
- -0.99 - -0.33
- -1.66 - -1.00
Trend of Length of Dry Season LDS (1985-2010)

Change per year [10-day periods]
- 0.26 - 0.42
- 0.09 - 0.25
- -0.07 - 0.08
- -0.24 - -0.08
- -0.42 - -0.25
Status of work (cont.):

The CCIS web portal key features:

- Easy access to climate information in different formats (time series, tables, maps, other)
- Climate information product management provides full control for the operator who has access to which product
- User management allows to create subsets of information to address individual user needs
- Expansible: integration of other information sources easily possible
- CMS based web portal
- Open source license
Live
Climate data permissions

For all selected fields of the weather data you get new view permissions per date range (daily, monthly) etc.

Fields
- Average max temperature °C
- Average min temperature °C
- Average precipitation amount mm
- Average sea level pressure hPa
- Average mean temperature °C
- CC [octas]
- CDD [d]
- CSDI [d]
- CWD [d]
- Date
- DD [d]
- DTR [°C]
- FD [d]
- FG [m/s]
- FX [m/s]
- GSL [d]
- HU [%]
- ID [d]
- PP [hPa]
Status of work: with respect to “drought”

- The CCIS addresses climate and drought information needs by sectors
- Single voice policy: Using a consistent data and indices set that different sectors can draw from for drought documentation and adaptation planning
- The CCIS is a good instrument to document and monitor droughts
Conclusion

- BMKG information basis on historical climate data expanded significantly
- Standard climate information indices for drought and adaptation to climate change will be consistently available and linked to sectoral needs
- Easy access and use
- Easily extendable in technical and content based regard
Thank you very much

www.bmkg.go.id
Conclusion (cont.)

How can we comprehensively monitor and characterize the magnitude, spatial extents, trends, and duration of drought for areas of interest in a timely manner?

What work is being done to create comprehensive and integrated drought monitoring systems? What indicators (climate, water soil, crop, and/or economic variables) are selected for monitoring each type of drought and why?

- Drought relevant indices in the CCIS document
- Trends Maps and Time Series
- Walter Diagram with aridity

- The drought relevant climate indices allows documentation of drought and international comparability
- Matching supply and demand by e.g. FGD
- Modular design of the CCIS provide a basis to extend the CCIS where needed
Conclusion (cont.)

In order to better respond to the information needs of stakeholders, can these drought information/early warning systems include warning of the potential impact on the economy, households, or the environment?

- For this the mandate of the information supplier has to be clarified. In Indonesia economy, households and environment is not the responsibility of the weather service.

- Addressing concrete user demands (seam less climate service) and have repetitive exchange between the stakeholders e. g. by FGD

What are the requirements for successful drought information/early warning systems?
Trend of Onset of Dry Season ONDS (1985-2010)

Change per year [10-day periods]

- Blue: 0.27 - 0.44
- Gray: 0.10 - 0.26
- Light Green: -0.08 - 0.09
- Orange: -0.25 - -0.09
- Red: -0.44 - -0.26