Attempts of Cloud Microphysics in a GCM

In-Sik Kang

Seoul National University

Young-Min Yang (SNU), Ildae Choi (SNU) and Wei-Kuo Tao (GFSC)
Moisture equations & Reynolds averaging

- Governing equations for water vapor (q)

$$\frac{\partial q}{\partial t} + (\bar{u} \cdot \nabla)q = -C$$

- After Reynolds averaging (over a grid)

$$\frac{\partial \bar{q}}{\partial t} + \bar{u} \cdot \nabla \bar{q} = -\frac{\partial}{\partial p} \omega' q' - \bar{C}$$

- Convective parameterization equation

$$-\frac{\partial}{\partial p} \omega' q' = -g \frac{\partial M_c(q_c - \bar{q})}{\partial p} - C$$

- C: condensation-evaporation
- Sub-grid scale physics (Cloud)
- Large-scale condensation
- C: convective precipitation
35km GCM simulation

Simplified RAS

No cumulus parameterization
Parameterization is still needed for O(10km) models
But not as it is in O(100km) models
Current approaches

Explicit Parameterization

Aerosol Indirect Effect
- Global radiation budget change
- Climate change simulation
- Regional climate impact
 - Change monsoon circulation

Multi-scale Modeling Framework (Superparameterization)

Global Cloud Resolving Model

- NASA/GSFC, CSU
- NICAM (Japan)

*Horizontal Resolution of CRM: 4km

14, 7, 3.5km
Cloud Microphysics

No cumulus parameterization

Simplified RAS
Cloud Resolving Model

Hovmuller diagram of precipitation (No nudging of zonal wind)

Radiative-convective equilibrium experiment (self adjusted by energy balance) 3.82 mm day⁻¹, 3.77 mm day⁻¹, 3.85 mm day⁻¹, 3.95 mm day⁻¹
Vertical profile of moist static energy

- Last 15 days mean of radiative-convective equilibrium
Budget of microphysical processes (vertical integration)

Dominant processes having resolution dependency

- Rainfall rate
- Evaporation
- Condensation
- Sublimation
- Melting of graupel to make rain
- Melting of snow to make rain
- Deposition
- Accretion of cloud ice to make graupel
- Accretion of cloud water to make graupel
- Accretion of snow to make graupel
- Bergeron process of cloud ice
- Accretion of cloud water to make rain
- Accretion of rain to make snow
- Accretion of cloud water to make snow
- Freezing of cloud water to make ice

[10^{-2} \text{ mm h}^{-1}]
Modification of cloud microphysics in CRM

✓ Sub-grid concept of condensation process

- RH vs. amount of condensation

✓ Modification of autoconversion threshold value

\[
PRAUT = \alpha \rho (q_c - q_{c0})
\]

- \(\alpha \): rate coefficient (10^{-3})
- \(q_{c0} \): mass threshold value for autoconversion

\[
(\alpha) = CND + \alpha \cdot (EVP - \alpha)
\]

- Modify \(q_{c0} \) smaller from 1.5 \times 10^{-6} \text{ g g}^{-1} to 1.5 \times 10^{-4} \text{ g g}^{-1} (expect to the active conversion process from cloud water to rain water)
CRM result for condensation rate

(1) Sub-grid concept of condensation process

(2) Modification on autoconversion

Total modification (1) + (2)
The Impact of Modification of cloud microphysics

- Original microphysics (35km, Jan)
- Modified microphysics (35km, Jan)

PDF of precipitation
30S~10N, 45E~240E

- a) PDF of little prcp.
- b) PDF of middle prcp.
- c) PDF of heavy prcp.
- d) Diff. (new-old)
- e) Diff. (new-old)
- f) Diff. (new-old)
Toward High Resolution GCM with Microphysics

- Microphysics for convective cloud
- Microphysics for grid-scale condensation
- Subgrid-scale vertical transport

Advanced Moist processes for high resolution GCM

Convective parameterization

Cloud microphysics (GCE)
Parameterization vs Microphysics

Precipitation (Jan)

- TRMM Observation

- 35km GCM simulation

Convective parameterization (Bulk scheme Kim & Kang, 2011)
Large scale condensation parameterization

\[\frac{\partial \tilde{q}}{\partial t} + \tilde{u} \cdot \nabla \tilde{q} = \frac{\partial}{\partial p} \left(\omega' q' \right) - \tilde{C} \]

Modified cloud microphysics (GCE)

Microphysics for grid-scale condensation only
Parameterization vs Microphysics

Precipitation (Jan)

- TRMM Observation

- 35km GCM simulation

Microphysics for grid-scale condensation only

> Adding convective parameterization for sub-grid scale condensation

Modified cloud microphysics (GCE)

\[
\frac{\partial \tilde{q}}{\partial t} + \tilde{u} \cdot \nabla \tilde{q} = \frac{\partial}{\partial p} \left(\omega' q' \right)
\]

Convective parameterization (Bulk scheme Kim & Kang, 2011)
Shallow convection vs Deep convection

- TRMM Observation
- 35km GCM simulation

Modified Microphysics
+ shallow convection
(non-precipitation, diffusion type
similar concept to Manabe scheme)

Modified Microphysics
+ shallow convection
+ Deep convection (BULK scheme)
Shallow convection vs Deep convection

Modified Microphysics

+ shallow convection
 (non-precipitation, diffusion type
 similar concept to Manabe scheme)

Modified Microphysics
+ Deep convection (BULK scheme)

35km GCM simulation

Precipitation (Jan, 3hourly)
Cloud microphysics

Non-hydrostatic vertical motion
Explicit turbulence
Cloud microphysics

Gobal CRM

Too much computational cost

High resolution GCM
Bulk & turbulence ensemble convection
Resolution dependent microphysics

Conventional GCM
Hydrostatic
Parameterized turbulence
Simple rain process

O(<1km)

O(100km)
Thank you
Influence of different type of microphysics in GCM

- Prcp. of Jun

TRMM

Lin scheme (1983), 35km

Rutledge-Hobbs scheme (1984), 35km