Multi-Model Ensemble Coupled Prediction for Monsoon Prediction

June-Yi Lee and Bin Wang
IPRC and Department of Meteorology, University of Hawaii

Contributors

APCC: J.-H. Yoo, Y.-M. Min, S.-J. Shon
ENSEMBELS: A. Alessandri, F. Vitart
Introduction

Current Status of Monsoon Prediction: Seasonal Anomaly

Factors for Limiting Monsoon Prediction: Systematic Bias and Predictability Limit

Improvement of Monsoon Prediction

Challenges and Directions
The monsoon precipitation is a principal atmospheric heat source that drives tropical and extratropical circulation and has profound impacts on agricultural planning and water resource management. Thus, reliable prediction of the seasonal variation in monsoon system is one of the most important and challenging tasks in climate system.

Limitation and challenges still remain in seasonal prediction of monsoon precipitation in spite of the fact that global climate models have made groundbreaking progress in the past two decades.

The CliPAS (Climate Prediction and its Application to Society) team has advanced our understanding of

- the current status and challenges of MME seasonal prediction through assessment of 19 models’ two-decade long hindcast.
- what can be expected to be predicted, which is a prerequisite to efforts in climate prediction.
International Programs for Seasonal Climate Hindcast Experiments

CliPAS
Climate Prediction and its Application to Society (Wang et al. 2009; Lee et al. 2010)
- 7 coupled and 7 atmospheric only models (1981-2004)

APCC
APEC Climate Center hindcast and real-time MME (Min et al. 2011; Sohn et al 2011)
- 5 coupled and 8 atmospheric only models (Hindcast: 1983-2003
Real-time Forecast: 2006-2011)

DEMETER
Development of a European Multi-model Ensemble system for seasonal to inTERannual prediction (Palmer et al. 2004)
- 7 coupled models (1980-2001)

ENSEMBLES
ENSEMBLE-based predictions of climate changes and their impacts (Weisheimer et al. 2009; Alessandri et al. 2011)
- 5 coupled models (1960-2005)
The CliPAS-ENSEMBLES MME System

<table>
<thead>
<tr>
<th>Institute</th>
<th>Model Name</th>
<th>AGCM</th>
<th>OGCM</th>
<th>Ensemble member</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMRC</td>
<td>POAMA1.5</td>
<td>BAM 3.0d</td>
<td>ACOM3</td>
<td>10</td>
<td>Zhong et al (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T47 L17</td>
<td>0.5-1.5° lat x 2.0° lon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDL</td>
<td>CM2.1</td>
<td>AM2.1</td>
<td>MOM4</td>
<td>10</td>
<td>Delworth et al (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2° lat x 2.5° lon</td>
<td>1/3° lat x 1° lon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEP</td>
<td>CFS</td>
<td>GFS</td>
<td>MOM3</td>
<td>15</td>
<td>Saha et al (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T62 L64</td>
<td>1/3° lat x 5/8° lon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T42L21</td>
<td>1/3° lat x 1° lon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMCC-INGV</td>
<td>CMCC</td>
<td>ECHAM5</td>
<td>OPA 8.2</td>
<td>9</td>
<td>Alessandri et al (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T63 L19</td>
<td>2.0° x 2.0° L31</td>
<td></td>
<td>Pietro and Masina (2009)</td>
</tr>
<tr>
<td>ECMWF</td>
<td>ECMWF</td>
<td>IFS CY31R1</td>
<td>HOPE-E</td>
<td>9</td>
<td>Stockdale et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T159 L62</td>
<td>1.4° x 0.3°-1.4° L29</td>
<td></td>
<td>Balmaseda et al. (2008)</td>
</tr>
<tr>
<td>IFM-GEO MAR</td>
<td>IFM</td>
<td>ECHAM4</td>
<td>OPA 8.2</td>
<td>9</td>
<td>Keenlyside et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T42 L19</td>
<td>2.0° lat x 2.0° lon L31</td>
<td></td>
<td>Jungclaus et al. (2006)</td>
</tr>
<tr>
<td>MF</td>
<td>MF</td>
<td>IFS</td>
<td>OPA 8.0</td>
<td>9</td>
<td>Daget et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T95 L40</td>
<td>182GPx152GP L31</td>
<td></td>
<td>Salas Melia (2002)</td>
</tr>
<tr>
<td>UKMO</td>
<td>UKMO</td>
<td>ECHAM5</td>
<td>MPI-OM1</td>
<td>9</td>
<td>Collins et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T42 L19</td>
<td>2.5° lat x 0.5°-2.5° lon L23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The one-month lead seasonal prediction skill for the state-of-the-art 9 coupled models’ multi-model ensemble (MME) prediction from CliPAS and ENSEMBLES (1981-2005)
Forecast Skill

- Although the ENSO, a dominant predictability source of global seasonal prediction, is reasonably well predicted, the seasonal precipitation prediction over the A-AM region is very poor, particularly during local summer over land.

- The spatial patterns of the AROC skill are very similar to the MME TCC skills and the AROC score of 0.7 is roughly 0.5~0.6 in the TCC skill for the deterministic forecast. The variations in the spatial patterns and the seasonality of the TCC and AROC skill suggest that the ENSO is the primary predictability source of the tropical seasonal precipitation.

- While coupled models have difficulty in predicting summer mean precipitation anomalies over the ASM region even for a 0-month lead forecast, they are capable of predicting zonal wind anomalies at 850-hPa several months ahead and, consequently, satisfactorily predict summer monsoon circulation indices for the EA region (EASMI) and for the WNP region (WNPSMI).
Dependence on ENSO Strength and Phase

- **The prediction skills highly depend on the strength and phases of ENSO.** The MME PCC skill for precipitation is well correlated with the amplitude of NiÑO 3.4 SST variation especially in the boreal winter with a correlation coefficient 0.75. **The anomalous precipitation and circulation are predicted better in the ENSO-decaying JJA than in the ENSO-developing JJA over the WNP-EA region.**

- **The MME well reproduces the observed anomalies of circulation and rainfall with Tropical Indian Ocean (TIO) and South China Sea warming and cooling over southeastern flank of the surface anticyclone in summers after the mature phase of ENSO. Local air-sea interaction (Wang et al. 2001) and remote forcing by TIO SST variability (Xie et al. 2010) play an important role on predicting WNP climate during JJA(1).**

- **The lagged impacts of ENSO on the Asian summer monsoon (ASM) rainfall** in coupled models provide useful skill over some parts of ASM region for above and below normal events, although the forecast skill decreases with forecast lead time.
Correction of the inherent bias in the mean state and annual cycle is critical for improving the long-lead seasonal prediction of precipitation because the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation.

The coupled models capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian-Australian monsoon system over major subdomains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.
Factors for Limiting Monsoon Prediction: Predictability Limit

Predictability limits for seasonal climate variability depend on the fraction of external and internal variability. From the observed data alone, separation of the total seasonal variance into its external and internal components remains difficult and controversial issue.

How to Estimate Potential Predictability using Multi Models

1. Mean Square Error (MSE) Method (Kumar et al., 2007, J. Climate)

► Basic Idea: The expected value of MSE is the sum of three terms: the observed internal variability, the internal variability of the ensemble mean of model simulations, and a term that is the error in model’s anomaly prediction. We can find the minimum value of MSE irrespective of which model it came from at each geographical location, and the spatial map of the minimum value of MSE is our best estimate for the observed internal variability.

\[
MSE = (M - O)^2 = \sigma_{oi}^2 + \sigma_{mi}^2 + \langle (\mu_m - \mu_o)^2 \rangle
\]

► Limitation: Since models have large anomaly errors related to slowly varying boundary forcing, the estimation always underestimates predictability.
Factors for Limiting Monsoon Prediction: Predictability Limit

How to Estimate Potential Predictability using Multi Models

2. Predictable Mode Analysis

(Wang et al. 2007; Lee et al. 2011; Lee and Wang, in press)

► Basic Idea: PMA relies on identification of “predictable leading modes of the observed interannual variation using both observation and the state-of-the-art MME hindcast. The predictability is quantified by the fractional variance accounted for by these “predictable” leading modes.

► Reference:

- B. Wang, J.Y. Lee et al., 2007: Coupled predictability of seasonal tropical precipitation. CLIVAR Exchanges, Vol.12, No. 4, 17-18

► Limitation: The method depends on the identification method of predictable mode and models’ quality for capturing major modes of the observed variability.
Factors for Limiting Monsoon Prediction

: Predictability Limit

- The MME Hindcast Skill (1981-2005)
- Theoretical Limit of TCC Skill by MSE
- Theoretical Limit of TCC Skill by PMA
The MME seasonal prediction skill is superior to that of any of single models, depending on the averaged skill of individual models and their mutual independency (Yoo and Kang, 2005, GRL; Wang et al., 2009, Clim Dyn). The MME prediction will be improved by optimal selection of a subgroup of models.

We have developed a new MME method (MME-SPPM2), whose strengths lie in a statistical error correction procedure and discreet selection procedure of reliable predictions among all possible candidates. MME-SPPM2 provides significantly improved skill over the globe as a whole, especially over the land area and extratropical oceans. The conspicuous improvement of the MME-SPPM2 is achieved against other MME methods over the regions in which the skill of individual models is poor.

The new APCC probabilistic multi-model prediction (PMMP) system, which uses the modified SPPM2 in conjunction with an optimal estimation of the forecast uncertainty, has improved the forecast skill for seasonal precipitation in terms of reliability and resolution during both cross-validated hindcast and independent real-time forecast period.
The spatial patterns of the AROC skill are very similar to the MME TCC skills and the AROC score of 0.7 is roughly 0.5~0.6 in the TCC skill for the deterministic forecast. The variations in the spatial patterns and the seasonality of the TCC and AROC skill suggest that **the ENSO is the primary predictability source of the tropical seasonal precipitation.**

While coupled models have difficulty in predicting summer mean precipitation anomalies over the ASM region even for a 0-month lead forecast, they are capable of predicting zonal wind anomalies at 850-hPa several months ahead and, consequently, satisfactorily predict summer monsoon circulation indices for the EA region (EASMI) and for the WNP region (WNPSMI).

EASMI = \[u^{2} + v^{2}\]
(127.5°-147.5°E, 32.5°-37.5°N)

WNPSMI = U850(100°-130°E, 5°-15°N) - U850(110°-140°E, 20°-30°N)
The prediction skills highly depend on the strength and phases of ENSO. The MME PCC skill for precipitation is well correlated with the amplitude of NIÑO 3.4 SST variation especially in the boreal winter with a correlation coefficient 0.75. The anomalous precipitation and circulation are predicted better in the ENSO-decaying JJA than in the ENSO-developing JJA over the WNP-EA region.

The MME well reproduces the observed anomalies of circulation and rainfall with Tropical Indian Ocean (TIO) and South China Sea warming and cooling over southeastern flank of the surface anticyclone in summers after the mature phase of ENSO. **Local air-sea interaction** (Wang et al. 2001) and **remote forcing** by TIO SST variability (Xie et al. 2010) play an important role on predicting WNP climate during JJA(1).

The lagged impacts of ENSO on the Asian summer monsoon (ASM) rainfall in coupled models provide useful skill over some parts of ASM region for above and below normal events, although the forecast skill decreases with forecast lead time.

Correction of the inherent bias in the mean state and annual cycle is critical for improving the long-lead seasonal prediction of precipitation because the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation.

The coupled models capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian-Australian monsoon system over major subdomains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.

Monsoon Regions

- **Indian Monsoon**
 - [IM, 5-30°N, 60-105°E]
- **Western North Pacific Monsoon**
 - [WNPM, 5-20°N, 105-160°E]
- **East Asian Monsoon**
 - [EAM, 20-45°N, 110-140°E]

We have developed a new MME method (MME-SPPM2), whose strengths lie in a statistical error correction procedure and discreet selection procedure of reliable predictions among all possible candidates. MME-SPPM2 provides significantly improved skill over the globe as a whole, especially over the land area and extratropical oceans. The conspicuous improvement of the MME-SPPM2 is achieved against other MME methods over the regions in which the skill of individual models is poor.

MME1: simple composite
MME2: multiple linear regression
MME3: MME-SPPM v1
MME3.1: MME-SPPM v2

* All MME method were applied to retrospective forecasts of JJA precipitation from 15 climate models in CliPAS and DEMETER projects.

The new APCC probabilistic multi-model prediction (PMMP) system, which uses the modified SPPM2 in conjunction with an optimal estimation of the forecast uncertainty, has improved the forecast skill for seasonal precipitation in terms of reliability and resolution during both cross-validated hindcast and independent real-time forecast periods.

The operational MME prediction at APCC during recent three years shows limited forecast skill for precipitation during warm season.

Challenges and Directions

- The MME can only capture a moderate portion of the precipitation variability. Improvement of the MME skill relies on good models, thus improvement of models is essential and remains a long-term goal.
- Monsoon prediction remains a major challenge for climate prediction. There is an urgent need to determine to what extent the intrinsic internal variability of monsoon limits its predictability, and to what extent improved land processes can contribute to improved predictive skill.
- The accuracy and consistency of the initial conditions of the coupled ocean-atmosphere system is important for improving short-lead seasonal prediction.
- Continuing improvement to the models’ representation of the slow coupled dynamics (e.g., properties of the coupled ENSO mode) is essential for improving ENSO and long-lead seasonal predictions.
- The poor performance over the continental monsoon region may be partially due to poor quality of the land surface initial conditions and the models’ deficiencies in the representation of atmosphere-land interaction. Global land surface data assimilation is an urgent need.
- We need to determine predictability of ISO and make statistical and dynamical forecast of ISO and monthly prediction.
- High resolution global models are necessary for prediction of TC and other extreme events.
Thank You!
We suggest a new MISO index that is defined by the first four multivariate EOF modes of daily OLR and U850 anomaly over the ASM region (10°S-40°N, 40°-160°E).

The RMM index captures the OLR variability primarily in the equatorial region whereas the MISO index captures large portion of the variability in the off-equatorial region, yielding more realistic variance pattern.

The MISO index describes better ISO variability center and represents better northward as well as eastward propagating pattern in the ASM domain than the RMM index.

The northward-propagating MISO component can be monitored using the phase diagram between the first and second PC similar as the eastward-propagating MJO. Taking into account distinct regional characteristics of MISO with smaller horizontal scale than MJO, the reconstructed field from the first four modes may provide more useful information.
Recent decades have lower predictability, not unlike the early 1990s. Attribution to lower variability.