Relationship Between the Meiyu over the Yangtze-Huaihe River Basins and the Frequencies of Tropical Cyclone Genesis in the Western North Pacific

Yanju LIU Yihui DING Yafang Song

(National Climate Center, CMA)
Outline

• Introduction
• Data and Methodology
• Relationship between the Meiyu and TC genesis
• Composite analysis and cases study(1994,1998)
• Summary
Introduction

• Tropical cyclones (TC) and Meiyu are of the most frequently occurring meteorological phenomena in East Asia in summer…

• Therefore, the research for the Meiyu and the TC activities have been attached much importance, respectively (Ding 2004; Ding et al. 2007; Chan 2000; Wang and Chan 2002; Yumoto and Matsuura 2001 …)

• **IS there any relationship between Meiyu rainfall and TC activity?**

This is a complicated problem, since the TC can affect Meiyu directly or indirectly and vice versa (Yamada and Kawamura 2007).
Compete for the moisture supply over the East Asia-the WNP regions?

Motivation

• shorter-term datasets
• case studies
• mechanism needs to be illuminated
• extend such study from viewpoint of climatology
• understand the mechanism
• seek for possible precursors for summer precipitation over the eastern China.

Meiyu and TC (negative correlation)

He and Fu (1992)
Kang et al. (1992)
Xu et al. (1994)
Lei et al. (2001)

……

Introduction
Data and methodology

• Data

The monthly reanalysis (1958-2001) from European Center of Meteorological Weather Forecast (ECMWF),

The tropical cyclone data (1951-2006) from Joint Typhoon Warning Center (JTWC)

The precipitation observation data (1951-2006) at 743 observation stations of China
Study Regions

the WNP is defined as the oceanic region of 0-50°N, 100-180°E

the Meiyu region is defined as the region of 27.5-32.5°N, 100-120°E

Meiyu Definition:
The averaged onset and ending date of the Meiyu season are June 17 and July 8. (early onset: end of May, late onset: the end of July)
In order to match with the large-scale monthly reanalysis data, the Meiyu period in this study is broadly defined as the two-month rainy period, namely from June to July.
TC refers to the tropical cyclone with its sustained maximum wind speed exceeding 18m.s\(^{-1}\). Most TCs mainly formed in the region of 5-20\(^\circ\)N, 110-160\(^\circ\)E.
Relationship between the Meiyu and TC genesis
The correlation field between the precipitation at 743 stations in China and the frequencies of TC genesis during the Meiyu period (from June to July) from 1951-2006. The shaded areas are statistically significant at 95% confidence level.
Time series of the normalized frequencies of TCs genesis over the WNP and precipitation over the YHRB. The line with circle refers to the frequencies of TCs generation. The line with plus refers to the precipitation over the YHRB.
Composite analysis and some cases studies
Composite analysis

<table>
<thead>
<tr>
<th>Years with fewer TCs(10)</th>
<th>Years</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Years with more TCs(7)</th>
<th>Years</th>
</tr>
</thead>
</table>

The standard deviation of +1 and -1 is defined as the threshold for choosing anomalous years.
Composite distributions of precipitation anomalies during the Meiyu period between the years with fewer and more TCs genesis. The shaded areas are statistically significant at the 95% confidence level.
Same as Fig. 5, but for the 850 streamline fields. The thick solid line denotes the ridge of anomalous anticyclone and the thick dashed line denotes the anomalous monsoon trough.
500hPa Geopotential height anomalies

(a) the years with fewer TCs genesis

(b) the years with more TCs genesis

(c) their difference

This kind of double-blocking high situation has been regarded as one of the typical circulation systems during Meiyu period (Li et al., 2008)

Same as Fig. 5, but for the 500hPa geopotential height.
(a) the years with fewer TCs genesis

(b) the years with more TCs genesis

(c) their difference

Same as Fig.5, but for the 200hPa zonal wind.
Vertical shear anomalies ($U_{200}-U_{850}$)

(a) the years with fewer TCs genesis
(b) the years with more TCs genesis
(c) their difference

Same as Fig.5, but for the vertical shear.

A stronger vertical wind shear is usually believed to be unfavorable for the occurrence and development of the TCs (Gray 1998)
Vertical shear over the region where TCs genesis

<table>
<thead>
<tr>
<th></th>
<th>the years with fewer TCs genesis</th>
<th>the years with more TCs genesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>4.97 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.72)</td>
<td>4.28 m/s</td>
</tr>
<tr>
<td></td>
<td>5.68 m/s</td>
<td>(-0.69)</td>
</tr>
</tbody>
</table>

Stronger vertical wind shear unfavorable for the occurrence and development of the TC.
Moisture transport anomalies

(a) the years with fewer TCs genesis

(b) the years with more TCs genesis

Same as Fig.5, but for the vertically integrated moisture transport.

(c) their difference
Composite schematic maps of the anomalous moisture budget during the Meiyu period. The unit is 10^6kg.s^{-1}. The “+” and “-” means the net influx and efflux respectively.
Cases study (after 1990)

<table>
<thead>
<tr>
<th>Normal</th>
<th>the year with fewer TCs genesis</th>
<th>the year with more TCs genesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>1998 (3)</td>
<td>1994 (13)</td>
</tr>
</tbody>
</table>
Precipitation anomalies

1998

1994
500 hPa Geopotential Height

H500 1998 (June–July)

H500 1994 (June–July)
Moisture transport anomalies

1998

1994
Composite schematic maps of the anomalous moisture budget

1998

1994
Correlation Analysis in JJA

The correlation field between the precipitation at 743 stations in China and the frequencies of TC genesis in JJA from 1951-2006. The shaded areas are statistically significant at 95% confidence level.
850hPa streamline, precipitation and genesis of TCs in JJA

(a) the years with fewer TCs genesis

(b) the years with more TCs genesis
<table>
<thead>
<tr>
<th></th>
<th>the years with fewer TCs genesis</th>
<th>the years with more TCs genesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-tropical high</td>
<td>Located farther south and west, stronger intensity</td>
<td>Located farther north and east, weaker intensity</td>
</tr>
<tr>
<td>Monsoon trough</td>
<td>located farther west, weaker intensity</td>
<td>located farther east, stronger intensity</td>
</tr>
<tr>
<td>Geopotential height</td>
<td>Two ridges and one trough</td>
<td>Two troughs and one ridge</td>
</tr>
<tr>
<td>Westerly belt</td>
<td>Located farther south, stronger intensity</td>
<td>Located farther north, weaker intensity</td>
</tr>
<tr>
<td>Vertical shear</td>
<td>Stronger</td>
<td>weaker</td>
</tr>
<tr>
<td>Moisture</td>
<td>SWNP: divergence; YZ: convergence</td>
<td>SWNP: convergence; YZ: divergence</td>
</tr>
<tr>
<td>Precipitation</td>
<td>more</td>
<td>Less</td>
</tr>
</tbody>
</table>
The results have shown that there exists a significant negative correlation between the intensity of Meiyu and the frequencies of tropical cyclone in the WNP, which is due to the fundamental changes in monsoonal airflows and associated moisture transports over East Asia and the WNP.

The kind of negative relationship will be useful for the seasonal climate forecast of the Meiyu and typhoon during flooding season in China or even in East Asia, which can be regarded as one kind of constraint conditions for Meiyu forecast, hereby judging the rationality of typhoon and Meiyu forecasts.
谢谢！
Precipitation anomalies