FORECASTING GLOBAL CROP FAILURES TO PREPARE CLIMATE-INDUCED FOOD INSECURITY

Toshichika Iizumi1, Hirofumi Sakuma2, Masayuki Yokozawa1, Jing-Jia Luo3, Andrew J. Challinor4 and Toshio Yamagata2

1National Institute for Agro-Environmental Sciences
2Research Institute for Global Change, JAMSTEC
3Australian Bureau of Meteorology
4University of Leeds
Heterogeneous geo-distribution of crop production

Table. World area harvested, average yield, production, and export quantity for four crops in 2008.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area Harvested (Million ha)</th>
<th>Yield (t/ha)</th>
<th>Production (top 3 share) (Million t)</th>
<th>Export Quantity (Million t)</th>
<th>Export/Production (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>161</td>
<td>4.1</td>
<td>827 (64%)</td>
<td>102 (74%)</td>
<td>12.3</td>
</tr>
<tr>
<td>Soybean</td>
<td>96</td>
<td>1.7</td>
<td>231 (81%)</td>
<td>79 (89%)</td>
<td>34.1</td>
</tr>
<tr>
<td>Rice</td>
<td>159</td>
<td>3.7</td>
<td>689 (58%)</td>
<td>29 (63%)</td>
<td>4.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>222</td>
<td>3.1</td>
<td>683 (38%)</td>
<td>131 (47%)</td>
<td>19.2</td>
</tr>
</tbody>
</table>

A few grids provide most food!
Specific climate variable at specific timing

- Weight, length, or number (relative value)
- Biomass dry weight
- Canopy height
- Leaf numbers

Emergence
Sowing
Vegetative growth
Reproductive growth
Flowering
Harvesting

Kubo & Tani (1982)

Nemani et al. (1997) *Science*

Horie (2004)

Iizumi et al. (in preparation)

Nemani et al. (1997) *Science*

Degree of Strong climate-crop relationship

Weak

Low Climate predictability High (or climate forecast skill)

I
II
III
IV
This situation calls for a global early warning system for food supply anomalies;

Most crop prediction or famine early warning operate regionally, and few have evaluated the crop prediction skill at the global scale;

The key question is that of potential utility: how high is the crop prediction skill in capturing the year-to-year yield variation at useful lead times?
Data and Methods (crop yield)

- Global, gridded historical yield dataset (Iizumi et al., *Global Ecol. Biogeogr.*, in review)
 - covers the period 1982–2006
 - derived by aligning county yield statistics with yield proxy from satellites

- Removal of technological yield trend to derive climate–crop relationship
 - $\Delta Y_t = \frac{(Y_t - Y_{t-1})}{Y_{ave}} \times 100$
 - Same average yield was used for the first 3–yr of the study period

![Map of global yield data]

![Graph of maize yield in USA (1980-2005)]
Data and Methods (crop phenology)

- Global crop phenology dataset
 - Type of cropping system
 - Maize (major/secondary)
 - Soybean (major)
 - Rice (major/secondary)
 - Wheat (winter/spring)
 - Share of production by cropping system
 - Average yield of winter wheat 2 t/ha (100t) and spring wheat 4 t/ha (500t) is not 3 t/ha, but 3.7 t/ha
 - Specification of key growing season for each cropping system

<table>
<thead>
<tr>
<th>Tillage</th>
<th>Winter wheat</th>
<th>Spring wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vegetative growth</td>
<td>Reproductive growth</td>
</tr>
<tr>
<td></td>
<td>Planting</td>
<td>Flowering</td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key growing season
Data and Methods

- 2m air temperature and soil moisture (surface 10cm) data
 - Seasonal forecasts from SINTEX-F and JRA-25 reanalysis, both monthly basis
 - Lead time ranges from 3 to 5 month for pre-season prediction and 1 to 3 month for within-season prediction

-- Multiple linear regression models:
 - $\Delta Y_t = \Delta T_t + \Delta SW_t + \varepsilon$
 - $\Delta T_t = T_t - T_{t-1} \; ; \; \Delta SW_t = SW_t - SW_{t-1}$
 - Y is yield (t/ha), T and SW is key growing season mean temperature (°C) and soil moisture (mm), suffix t indicates year (N=24);
 - One model for each cropping system (then calculate weighted average yield);
 - Regression coefficients were determined by Bayesian calibration method.
• Over 16% (r=.404, p<.05) of year-to-year yield variation can be explained by temperature and soil moisture alone. Such “skillful” area produces 28 to 40% of world production in 2000.
Within-season prediction

• Skillful area of within-season prediction produces 3 to 10% of world production.
• Prediction achieved limited part of the potential...
• Amount of production produced in “skillful” area decreases as lead time increases.
Are these predictions better than random?
Sensitivity of yield to temperature and soil moisture

• Weighted average of yield elasticity to temperature and soil moisture (evaluated based on climatological mean values);
• Maize and soybean are water dependent while rice and wheat are more temperature dependent.
Crop prediction skill

Observation

Within-season Pre-season
Is there further value from prediction for wheat?

Wheat is the world's third most produced cereal crop, but covers more land area worldwide than any other crop!

Wheat export (t)

- **United States of America**: 23%
- **France**: 12%
- **Canada**: 12%
- **Argentina**: 7%
- **Russia**: 9%
- **Ukraine**: 6%
- **Australia**: 6%
- **Germany**: 5%
- **Others**: 20%
Crop prediction skill in wheat exporting countries

1st Exporter (23% of world export) 2nd Exporter (12%)

3rd Exporter (12%) 6th Exporter (6%)
Summary

• Skill of seasonal forecast–based crop prediction is significantly better than that of random forecast for temperature–dependent crops (rice and wheat);

• Skill decreases as lead time increases, but the pre–season prediction skill for wheat remains similar to the within–season in two major exporting countries;

• There is value to be obtained from seasonal forecasts for global food security applications, but the current crop prediction achieve only the limited part of the potential.

• Global crop predictions have a potential to inform about climate–induced wheat yield drops that could be triggers of embargos from major exporting countries food agencies several months to nearly half a year before harvest.